causal complexity - significado y definición. Qué es causal complexity
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es causal complexity - definición

APPROACH TO QUANTUM PHYSICS
Causal set; Causal Set; Causal Sets; Causet; Causal set theory; Causal set theory bibliography; User:Sumatisurya/sandbox; Causal Set Theory Bibliography; Causal set bibliography
  • A plot of 1000 sprinkled points in 1+1 dimensions
  • A plot of geodesics between two points in a 180-point causal set made by sprinkling into 1+1 dimensions

Computational complexity         
MEASURE OF THE AMOUNT OF RESOURCES NEEDED TO RUN AN ALGORITHM OR SOLVE A COMPUTATIONAL PROBLEM
Asymptotic complexity; Computational Complexity; Bit complexity; Context of computational complexity; Complexity of computation (bit); Computational complexities
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements.
complexity         
PROFESSIONAL ESPORTS ORGANIZATION BASED IN THE UNITED STATES
Los Angeles Complexity; CompLexity Gaming; LA Complexity; Complexity LA; CompLexity; Team CompLexity; CoL.Black; CoL
<algorithm> The level in difficulty in solving mathematically posed problems as measured by the time, number of steps or arithmetic operations, or memory space required (called time complexity, computational complexity, and space complexity, respectively). The interesting aspect is usually how complexity scales with the size of the input (the "scalability"), where the size of the input is described by some number N. Thus an algorithm may have computational complexity O(N^2) (of the order of the square of the size of the input), in which case if the input doubles in size, the computation will take four times as many steps. The ideal is a constant time algorithm (O(1)) or failing that, O(N). See also NP-complete. (1994-10-20)
computational complexity         
MEASURE OF THE AMOUNT OF RESOURCES NEEDED TO RUN AN ALGORITHM OR SOLVE A COMPUTATIONAL PROBLEM
Asymptotic complexity; Computational Complexity; Bit complexity; Context of computational complexity; Complexity of computation (bit); Computational complexities
<algorithm> The number of steps or arithmetic operations required to solve a computational problem. One of the three kinds of complexity. (1996-04-24)

Wikipedia

Causal sets

The causal sets program is an approach to quantum gravity. Its founding principles are that spacetime is fundamentally discrete (a collection of discrete spacetime points, called the elements of the causal set) and that spacetime events are related by a partial order. This partial order has the physical meaning of the causality relations between spacetime events.

The program is based on a theorem by David Malament that states that if there is a bijective map between two past and future distinguishing space times that preserves their causal structure then the map is a conformal isomorphism. The conformal factor that is left undetermined is related to the volume of regions in the spacetime. This volume factor can be recovered by specifying a volume element for each space time point. The volume of a space time region could then be found by counting the number of points in that region.

Causal sets was initiated by Rafael Sorkin who continues to be the main proponent of the program. He has coined the slogan "Order + Number = Geometry" to characterize the above argument. The program provides a theory in which space time is fundamentally discrete while retaining local Lorentz invariance.